2025.01.04 - [DeepLearning/Object Detection 논문] - Fast R-CNN 논문 리뷰
Fast R-CNN 논문 리뷰
2025.01.04 - [DeepLearning/Object Detection 논문] - R-CNN(Regions with CNN features) R-CNN(Regions with CNN features)Object detection 에서 가장 기본이 되는 CNN모델을 어떻게 활용하는지 다양한 논문들을 살펴볼 예정입니다.
rowithpeople.tistory.com
지난 Fast R-CNN을 소개했고 이를 더욱 성능을 극대화 시키도록 제작한 Faster R-CNN을 소개하겠습니다.
Faster R-CNN
- Bring the Region Proposal Network(RPN) into the framwork
- No longer off-the-shelf proposal network needed.(기존에 사용했던 proposal model이 아닌 neural network를 사용)
- No longer off-the-shelf proposal network needed.(기존에 사용했던 proposal model이 아닌 neural network를 사용)
- Stage 1: Training the RPN(Region Proposal Network)
- For each position in conv feature map, suppose a set of candidate bounding box(called Anchor).
- Usually, 3 ratio (1:1, 1:2, 2:1) and 3 sizes, total 9 anchors used.(비율 3가지(파란색 박스), 크기 3가지(파,빨,녹))
- ⁕ Anchor Examples
- IoU: 예측한 boundig box와 GT의 교집합/합집합
- IoU: 예측한 boundig box와 GT의 교집합/합집합
- ⁕ Anchor Examples
- Usually, 3 ratio (1:1, 1:2, 2:1) and 3 sizes, total 9 anchors used.(비율 3가지(파란색 박스), 크기 3가지(파,빨,녹))
-
- If the anchor sufficiently overlaps with a GT bounding box, it is considered as a positive.
- If the anchor does not overlap with any GT bounding box, it is considered as a negative.
- RPN is trained to classify positive/negative for each anchor and to regress the bounding box if it is a positive.
- 중요!! Loss function for training RPN(예측proposal과 GT로 Anchor를 이용한 최종 proposal를 찾아냄)
- For each position in conv feature map, suppose a set of candidate bounding box(called Anchor).
- Stage 2: Same as Fast R-CNN
- Using the RPN trained in Satage 1, perform Rol Pooling, classification, and regression.
출처:
https://www.youtube.com/watch?v=W6EVlzVP0TM&ab_channel=JoonseokLee
논문:
'DeepLearning > Object Detection 논문' 카테고리의 다른 글
Fast R-CNN 논문 리뷰 (0) | 2025.01.04 |
---|---|
R-CNN(Regions with CNN features) (0) | 2025.01.04 |